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Abstract

Beam stiffeners have frequently been used for raising natural frequencies of base structures. In stiffener
layout optimization problems, most of the previous researches considering the position and/or the length of
the stiffener as design variables dealt with structures having just simple convex shapes such as a square or
rectangle. The reason was because concave shape structures have difficulties in formulating geometry
constraints. In this paper, a new geometry constraint handling technique, which can define both convex and
concave feasible regions and measure a degree of geometry constraint violation, was proposed. Evolution
strategies (ESs) was utilized as an optimization tool. In addition, the constraint-handling technique of
EVOSLINOC (EVOlution Strategies for scalar optimization with LInear and NOnlinear Constraints) was
utilized to solve constrained optimization problems. From numerical examples, the proposed geometry
constraint handling technique was verified and proved that the technique can easily be applied to structures
in not only convex but also concave shapes, even with a protrusion or interior holes.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Structural dynamics modification (SDM) technique is widely used to optimally modify a base
structure by adding or deleting auxiliary (modifying) structures to improve dynamic
characteristics, e.g. natural frequency, mode shape and frequency response function (FRF), of
see front matter r 2004 Elsevier Ltd. All rights reserved.

jsv.2004.08.010

ding author. Tel.: +82 42 869 3020; fax: +82 42 869 8220.

resses: justinlee@kaist.ac.kr (J.-H. Lee), kimgyeongho@kaist.ac.kr (G.-H. Kim),

kaist.ac.kr (Y.-S. Park).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS

J.-H. Lee et al. / Journal of Sound and Vibration 285 (2005) 101–120102
the base structure. There have been hundreds of research papers on SDM since the late 1970s. The
overall methodology of the technique and issues (e.g. mode truncation, lack of rotational dof, etc.)
were summarized by Avitabile [1].
Beam stiffeners have frequently been used for raising natural frequencies of base structures.

Adding stiffeners increases small weight, but its influence on the total stiffness is enormous.
Traditionally, the cross-sectional dimensions of stiffeners are considered as main design variables
while their positions or lengths are predetermined in the optimization process [2]. However, it was
claimed that the overlooked variables (i.e. positions and lengths of stiffeners) also affect the
dynamics of base structures significantly [3–9].
If the positions as well as the lengths of stiffeners are considered as design variables and

stiffeners are geometrically constrained to be placed within the base structure (i.e. feasible stiffener
positioning region), a stiffener layout optimization problem becomes a constrained optimization
one. In case of a convex feasible region, the feasible region can be mathematically described with
inequality constraints. However, in case of a concave feasible region, it is difficult to describe the
feasible region in mathematical forms. In order to handle the second case easily and efficiently,
geometry algorithms [10,11], which are used in the fields of computer graphics and imaging,
computer vision and recognition, etc., are adopted in this paper.
Based on the feasible region defined by geometry algorithms, evolution strategies (ESs) [12–14],

which is a probabilistic population-based optimization technique, is used. The technique finds an
optimal solution by processing a population of design points among the space of variables based
on the principles from biological evolution in nature. In addition, the constraint-handling
technique of EVOSLINOC (EVOlution Strategies for scalar optimization with LInear and
NOnlinear Constraints), proposed by Binh and Korn [15], is utilized to solve constrained
optimization problems using ESs.
The objectives of this paper are: (1) to propose a geometry constraint-handling technique,

which can define both convex and concave feasible stiffener positioning regions and measure a
degree of geometry constraint violation; (2) to apply the technique to stiffener layout optimization
problem to raise the first natural frequency of the base structure.
The remainder of the paper is organized as follows. In Section 2, a target problem, i.e. stiffener

layout optimization, is defined first and then, the necessity of geometry algorithms in stiffener
layout optimization is described. Section 3 explains how to represent a feasible region and to
perform a feasibility check by geometry algorithms. Section 4 describes the EVOSLINOC, which
is used to solve constrained optimization problems. In Section 5, a special strategy to measure a
degree of geometry constraint violation is proposed. In Section 6, numerical examples of stiffener
layout optimization to raise the first natural frequency of an L-shaped plate structure and a front
panel of air conditioner outdoor unit are presented to verify the proposed technique.
2. Stiffener layout optimization

2.1. Target problem definition

The goal of this paper is to optimize stiffener layout to raise the first natural frequency o1 of a
base plate structure, as explained in Fig. 1. The design variables x include the coordinates of one



ARTICLE IN PRESS

J.-H. Lee et al. / Journal of Sound and Vibration 285 (2005) 101–120 103
end of stiffener xi; yi

� �
; stiffener rotation angle yi; and its length Li: Assuming that the stiffener is

geometrically constrained to be fully placed within the base plate, which is called a geometry
constraint in this paper, the target problem becomes a constrained optimization one.
2.2. Necessity of geometry algorithms in stiffener layout optimization

If a base plate has a convex (rectangular in this case) shape as in Fig. 2, the geometry constraint
can be mathematically described with inequality constraints as

0pxi; xi þ Li cos yipa;

0pyi; yi þ Li sin yipb: ð1Þ

The constraint formulas should be provided by an engineer when solving the constrained
optimization problem. Note that a point x that satisfies Eq. (1) is said to be feasible, where
x ¼ ðxi; yi;Li; yiÞ:
In general, the stiffener is modeled with beam elements and its geometry is represented by a line

segment. Thus, Eq. (1) corresponds to the condition that a line segment is included in a 2D planar
convex polygon. Note that a planar polygon is convex if it contains all the line segments
connecting any pair of its points. However, in case a base plate has a concave shape as Fig. 3, it is
difficult to describe the geometry constraint mathematically with just the coordinates of two end
points of the stiffener, which is the main reason why most of the previous researches [3–9] dealt
with just simple convex shapes such as a square or rectangle. If there are void spaces or obstacles
StiffenerBase structure
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Fig. 1. Target problem to be considered.
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Fig. 2. Convex feasible region.
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Fig. 4. A complex region which has ten inequality constraints to define a region O:
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inside the base plate, where the stiffener cannot be placed, it becomes more difficult. In addition, if
the base plate shape is complex, many inequality constraints are needed to define a feasible region
O: For example, Fig. 4 shows ten vertexes to define a region O of FE model of base plate. Thus,
twenty inequality constraint formulas should be constructed, i.e. ten inequality constraint
formulas ðgiðx; yÞ ¼ aix þ biy þ cip0; i ¼ 1; . . . ; 10Þ for each end of stiffener. As the number of
vertexes to define a feasible region increases, the more inequality constraint formulas are needed.
However, if geometry algorithms are utilized, not only the description of both convex and concave
feasible regions but also the feasibility check of design variables x can be performed easily and
efficiently. Note that the only necessary thing is the information of coordinates of polygon
vertexes which are used to define a feasible region.
3. Description of a feasible region and feasibility check by geometry algorithms

3.1. Inclusion of a point in a polygon

The constraint that a stiffener should be fully placed within the base plate can be stated as a line

segment should be included in a 2D planar polygon, where the stiffener is represented by a line
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Fig. 5. Test for inclusion of a point in a planar polygon (Ref. [11]).
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segment while the domain of the base plate (i.e. feasible stiffener positioning region) is represented
by a 2D planar polygon. Because a line segment is defined by two end points, a test for inclusion
of a point in a 2D planar polygon should be performed first.
Fig. 5 shows the crossing number method [11], which counts the number of times a ray starting

from the point crosses the polygon boundary edges. The point is outside when this crossing
number is even; otherwise, when it is odd, the point is inside. The crossing number method can be
applied to not only convex but also concave polygons.

3.2. Inclusion of a line segment in a polygon

In case of convex polygons, as shown in Fig. 6, a line segment is included in a polygon only if
two end points of the line segment are included in the polygon. However, in case of concave
polygons, an additional test is needed: a test for crossing between the line segment and the
polygon boundary edges, as shown in Fig. 7. Thus, in case of concave polygons, a line segment is
included in a polygon if (1) two end points of the line segment are included in the polygon and (2)
there is no crossing between the line segment and the polygon boundary edges.

3.3. Inclusion of a polygon in a polygon (supplementary)

Based on the test for inclusion of a line segment in a polygon, the inclusion of a polygon in a
polygon can also be tested. Assume that the feasible region is defined by intersection of two
regions: (1) region inside a polygon V1out; (2) region outside of a polygon V1in; as shown in Fig. 8.
Thus, a polygon V2 is in the feasible region if the following requirements are satisfied:
(1)
 All of the edges of the polygon V2 should be inside the polygon V1out:

(2)
 All of the edges of the polygon V2 should be outside of the polygon V1in:

(3)
 All of the edges of the polygon V1in should not be included in the polygon V2:
Note that the edges of a polygon are line segments themselves and the polygon V1in represents, for
example, a protrusion or interior holes.
In summary, a feasible region is defined by coordinates of vertexes of a planar polygon, which

can easily be obtained from FE model of the base plate, and a feasibility check can easily be
performed by a test for inclusion of a line segment in a planar polygon. Note that these methods
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Fig. 7. Test for inclusion of a line segment in a concave polygon.
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can also be applied to a 3D planar polygon with the surface normal vector n ¼ ðnx; ny; nzÞ by
transformation of coordinates from n ¼ ðnx; ny; nzÞ to n̂ ¼ ð0; 0; 1Þ:
4. EVOSLINOC

In order to handle geometry constraints by geometry algorithms, it is impossible to use
gradient-based optimization techniques, e.g. steepest descent method, conjugate gradient method,
quasi-Newton method, etc., as an optimization tool because geometry constraints, defined by



ARTICLE IN PRESS

V1out

V1in

V2

Fig. 8. Test for inclusion of a polygon in a polygon.

J.-H. Lee et al. / Journal of Sound and Vibration 285 (2005) 101–120 107
geometry algorithms, are not differentiable. Therefore, ESs [12–14], which is one of nongradient-
based optimization techniques, is utilized in this paper.
ESs is a probabilistic population-based optimization method that mimics the principle from

biological evolution in nature. In the ESs, each population is composed of design variables and
strategy parameters for mutation size. ESs is largely classified into two types of (m; l)-ESs and
(mþ l)-ESs. In the (m; l)-ESs, m parents produce l (4mX1) offspring by recombination and
mutation at every generation and then, the m best offspring are selected deterministically from the
l offspring and replace the current parents. As a result, the lifetime of an elite individual is one
generation. In the (mþ l)-ESs, on the other hand, m parents produce l offspring by recombination
and mutation at every generation and both parents and offspring compete to be the l parents of
the next generation. The details of ESs such as procedures of mutation and recombination can be
found in Refs. [12–14].
Evolutionary algorithms (EAs), whose three main paradigms are genetic algorithms (GA),

evolutionary programming (EP) and ESs, are inherently unconstrained optimization procedures.
Therefore, it is necessary to find ways of incorporating the constraints into the objective function
in order to solve constrained optimization problems by using EAs [16]. The most common
approach to handle constraints is based on the concept of penalty functions, where the
constrained optimization is converted into the unconstrained optimization of an auxiliary scalar
function fðxÞ which is created from the given objective function f ðxÞ and the amount of constraint
violation present in a certain solution x; for example, as Eq. (2)

fðxÞ ¼ f ðxÞ �
Xp

i¼1

ri �maxfgiðxÞ; 0g
b þ

Xm

j¼1

sj � jhjðxÞj
g

" #
ðb; g ¼ 1 or 2Þ (2)

where giðxÞ and hjðxÞ are inequality and equality constraints, respectively. ri and sj are weighting
factors. The basic problem of all penalty approaches, however, is how to design an auxiliary scalar
function fðxÞ: Therefore, their performances are problem-dependent.
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Traditional ESs uses death penalty method that eliminates infeasible individuals from the
population. Thus, ESs cannot start until a feasible initial population is generated. In addition, it is
not easy to find feasible individuals especially in case the feasible region is very narrow.
To cope with these drawbacks, Binh and Korn [15] proposed a new ESs for scalar optimization

with linear and nonlinear constraints (EVOSLINOC). The EVOSLINOC has the following
characteristics:


 It is not necessary to provide a feasible initial population.



 The handling of the objective function and constraints is performed separately. Therefore, no
auxiliary function is needed.


 Infeasible individuals are allowed during the optimization.

In EVOSLINOC, an individual is represented as follows:

Ind9ðx; s; f ðxÞ;CðxÞÞ (3)

where x is a vector of design variables and s is a strategy parameter vector. f ðxÞ is an objective
function value (F-fitness) and CðxÞ is a degree of violation of constraints or degree of infeasibility
(C-fitness). In general, C-fitness of an individual is defined by

CðxÞ ¼
Xp

i¼1

½ciðxÞ�
r

 !1=r

; ðr40Þ (4)

where ciðxÞ ¼ maxfgiðxÞ; 0g; i ¼ 1; . . . ; p:
Different to traditional ESs, both feasible and infeasible individuals can live in the population

simultaneously in EVOSLINOC. The reason why infeasible individuals should be alive in the
population can be explained in Fig. 9. An infeasible individual ‘b’ lies nearer to the feasible global
minimum than a feasible one ‘a’. For the same strategy parameter vector s; it is expected that the
infeasible individual ‘b’ generates feasible offspring better than offspring of the feasible individual ‘a’.
Thus, keeping such infeasible individuals in the population increases the possibility of finding the global
minimum. In addition, niche (in)feasible individuals are used in EVOSLINOC because they play an
important role to overcome local minima in multi-modal optimization problems. In Fig. 10, an
Minimum

b

a

*

*

Fig. 9. A feasible individual ‘a’ and an infeasible individual ‘b’ (Ref. [15]).
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individual ‘c’ is not better than other individuals ‘d’ that are stuck in a local minimum. However, it is
expected that the individual ‘c’ generates offspring better than offspring of other individuals ‘d’ for
finding the global minimum. Global selection scheme to create parents for the next generation from the
current population, which is a key point in the constraint-handling, is summarized as follows:
if nF == nP
select (mu - nU) feasible individuals
select nU niche feasible individuals

elseif nF == 0
select (mu - nU) best infeasible individuals
select nU niche infeasible individuals

elseif nF 4 0 & nF o (mu - nU)
select nF feasible individuals
select (mu - nU - nF) best infeasible individuals
select nU niche infeasible individuals

elseif nF 4 ¼ (mu - nU) & nF o nP
select (mu - nU) feasible individuals
select nU niche infeasible individuals

end
where nP, nF, nU and mu are the population size, the number of feasible individuals of the
current population, the number of niche (in)feasible individuals and the number of parents m;
respectively. Note that nU can be adjusted by engineers. The details of handling feasible and
infeasible individuals and niche individuals can be found in Ref. [15].
5. Linking geometry algorithms to EVOSLINOC

In geometry algorithms, a test for inclusion of a line segment in a planar polygon returns only
two binary values: 0 for feasible or 1 for infeasible. Therefore, all of the line segments that are not
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included in a polygon come to have equal C-fitness values. However, as shown in Fig. 11, an
infeasible line segment ‘b’ is better than infeasible line segments ‘c’ and ‘d’ because a fraction of
the line segment ‘b’ is inside the polygon. In addition, the infeasible line segment ‘c’ is better than
infeasible line segment ‘d’ because the line segment ‘c’ is closer to the polygon boundary edges
than line segment ‘d’. The EVOSLINOC uses C-fitness value for ranking infeasible individuals.
Thus, an additional strategy for ranking infeasible individuals is necessary when using geometry
algorithms. Fig. 12 shows a proposed strategy to measure a degree of infeasibility, which is based
on: (1) a fraction of the line segment lying outside of the polygon ðlout=ðlin þ loutÞÞ and (2) a
distance from the line segment to the nearest polygon boundary edge if a line segment is outside of
the polygon (dist). Thus, C-fitness value of an individual is calculated as

CðxÞ ¼ max
lout

lin þ lout
þ floor

lout

lin þ lout

� 	
� dist; 0


 �
(5)
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where maxðx; yÞ returns the larger value between x and y and floorðxÞ rounds x to the nearest
integer not exceeding x. Therefore, C-fitness values of four individuals in Fig. 12 are as follows:


 Segment a : 0 (feasible individual).



 Segment b : lout=ðlin þ loutÞ:



 Segment c : 1.



 Segment d : 1þ d1:
Note that F-fitness values of four individuals become as: 
o1ðo0Þ for the feasible segment ‘a’ and
0 for infeasible segments ‘b’, ‘c’ and ‘d’, where o1 is the first natural frequency of a stiffened plate.
Evaluation of objective function for infeasible individuals is not necessary. It is also noted that
polygon boundary edges themselves can be regarded as a portion of the feasible region at this
stage.
6. Numerical examples

Based on the proposed geometry constraint handling technique by geometry algorithms,
numerical examples of stiffener layout optimization are performed with an L-shaped plate
structure and a front panel of air conditioner outdoor unit.

6.1. L-shaped plate

6.1.1. Case 1
An L-shaped base plate structure, which is simply supported at five corners as shown in Fig.

13(a), is chosen as the first example. As mentioned before, four design variables are considered:
coordinates of one end of stiffener ðxi; yiÞ; stiffener rotation angle yi; and its length Li: The plate
has thickness tp ¼ 3mm; Young’s modulus E ¼ 200GPa; Poisson’s ratio n ¼ 0:3 and density
r ¼ 7800kg=m3: The stiffener, which is made of the same material as the plate, has cross-sectional
dimensions of width w ¼ 5mm and height h ¼ 10mm: First of all, a feasible stiffener positioning
region is defined by a 2D planar concave polygon VO with six vertexes, as shown in Fig. 13(b).
Coordinates of six vertexes are

VO ¼
VOx

VOy

� 

¼

0:0 1:5 1:5 0:5 0:5 0:0

0:0 0:0 0:5 0:5 1:0 1:0

� 

ðunit: mÞ (6)

The geometry of a line segment S representing the stiffener can be obtained from the given design
variables. If a test for inclusion of the line segment S in the planar polygon VO is successful, i.e.
CðxÞ ¼ 0; then natural frequencies of the stiffened plate are calculated [7–9,17]. Note that the
displacement of the stiffener is interpolated with shape functions of the plate elements, which
enables the stiffener to be arbitrarily placed on the base plate [7–9,17]. All of the techniques
involved in this paper can be summarized as follows:


 Geometry algorithms [10,11] to define a feasible region and to measure a degree of geometry
constraint violation.


 ESs [12–14] for mutation, recombination and the overall optimization.
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Fig. 13. (a) FE model of an L-shaped base plate, (b) a feasible region.
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Fig. 14. Modal dynamic strain energy distribution of base plate at first mode.

J.-H. Lee et al. / Journal of Sound and Vibration 285 (2005) 101–120112


 EVOSLINOC [15] for constraint-handling and global selection of the parents for the next
generation.
Note that all of the necessary functions are implemented in the MATLAB environment and the
MATLAB-based Structural Dynamics Toolbox [18] is used for both FE modeling and eigenvalue
solving.
Fig. 14 shows modal dynamic strain energy distribution of the base plate at first mode ðo1 ¼

3:6660HzÞ: First mode is a bending mode and high strain energy exists in the region marked by a
circle, from which the stiffener is expected to be placed in a way to suppress the dominant
vibration in that region.
In the process of ESs, the following parameters are used:


 Number of parents m ¼ 40:



 Number of offspring l ¼ 100:



 Number of niche (in)feasible individuals nU ¼ 0:3� m ¼ 12:



 Number of initial individuals ¼ 40:



 Number of population nP ¼ mþ l ¼ 140 ( ðmþ lÞ-ESs.



 Termination criterion: stop if the best value of the objective function in the last 40 generations
has not been improved.
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Intentionally, initial individuals with lengths less than 300mm are generated randomly to be
placed within the specified infeasible region, as shown in Fig. 15. Therefore, all initial individuals
become infeasible.
Figs. 16 and 17 show the variation of the stiffener layout and the improvement of the first

natural frequency of the stiffened plate during the optimization process, respectively. The
stiffener, marked number 0; shows the elite infeasible individual among all infeasible initial
individuals (i.e. individual having the lowest C-fitness value). Note that the elite feasible
individual, which is the one having the highest first natural frequency (i.e. the lowest F-fitness
value) among all population at a specific generation number, is plotted in Figs. 16 and 17. The
obtained optimal stiffener layout is shown in Fig. 16, marked number 5: When the stiffener is
placed along the bottom boundary line of the base plate, the first natural frequency o1 can be
increased to 3.9967Hz. Then the obtained feasible stiffener position is x� ¼ ðx�

i ; y
�
i ;L

�
i ; y

�
i Þ ¼

ð0:0000m; 0:0000m; 1:5000m; 0:0000�Þ:
6.1.2. Case 2
In order to verify the performance of the proposed technique, an infeasible region is added

inside the feasible region as shown in Fig. 18, which simulates the following situation: an obstacle
(e.g. protrusion) exists on the base plate, which restricts the movement of the stiffener during the
optimization process. Note that the added infeasible region can also represent void spaces (e.g.
holes) that exist inside the base plate. The optimal stiffener layout, however, should not be
changed by adding the infeasible region because the FE model of the base plate remains
unchanged. The added infeasible region interferes in only the process to obtain the optimal
solution. The interior infeasible region, where the stiffener cannot be placed, is defined by a 2D
planar convex polygon VI with four vertexes. Coordinates of four vertexes are:

VI ¼
VIx

VIy

� 

¼

0:25 1:25 1:25 0:25

0:20 0:20 0:30 0:30

� 

ðunit: mÞ (7)
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Fig. 16. Variation of stiffener layout during the optimization process (Case 1).
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Fig. 17. Improvement of the first natural frequency of the stiffened plate (Case 1).

Fig. 18. Feasible region with an interior infeasible region.

J.-H. Lee et al. / Journal of Sound and Vibration 285 (2005) 101–120114



ARTICLE IN PRESS

J.-H. Lee et al. / Journal of Sound and Vibration 285 (2005) 101–120 115
Thus, the feasible region can be defined by two planar polygons VO and VI; i.e. intersection
between the region inside the polygon VO and the region outside of the polygon VI: Note that the
feasible region is the only thing different from Case 1.
The optimal stiffener layout of Case 2, marked number 5; is shown in Fig. 19, which is nearly

the same with the result of Case 1. The obtained feasible stiffener position is x� ¼ ðx�
i ; y

�
i ;L

�
i ; y

�
i Þ ¼

ð0:0000m; 0:0000m; 1:5000m; 360:0000�Þ and the first natural frequency o�
1 of the stiffened plate is

3.9967Hz, as shown in Fig. 20.
6.1.3. Case 3
Different to Case 2, the feasible region is disjointed by an elongated interior infeasible region in

Case 3, as shown in Fig. 21. Because initial individuals of Case 1, which exist above the interior
infeasible region, are also used in this case, the optimizer must have an ability to cross over the
interior infeasible region, below which the optimal solution exists, to get to the optimal solution.
0
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5

Fig. 19. Variation of stiffener layout during the optimization process (Case 2).
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Fig. 20. Improvement of the first natural frequency of the stiffened plate (Case 2).
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Fig. 21. Feasible region disjointed by an interior infeasible region.
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Fig. 22. Variation of stiffener layout during the optimization process (Case 3).
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Case 3 is devised to show the ability of the proposed technique. The interior infeasible region is
defined by a 2D planar convex polygon VI with four vertexes:

VI ¼
VIx

VIy

� 

¼

0:0 1:5 1:5 0:0

0:2 0:2 0:3 0:3

� 

ðunit: mÞ (8)

The optimal stiffener layout of Case 3, marked number 5; is shown in Fig. 22, which is also nearly
the same with the results of Cases 1 and 2 even though the feasible region is disjointed. The
obtained feasible stiffener position is x� ¼ ðx�

i ; y
�
i ;L

�
i ; y

�
i Þ ¼ ð0:0000m; 0:0000m; 1:5000m; 0:0000�Þ

and the first natural frequency o�
1 of the stiffened plate is 3.9967Hz, as shown in Fig. 23.

6.2. Front panel of outdoor unit of air conditioner

The objective of the second example is to raise the first flexible natural frequency of the front
panel of an air conditioner outdoor unit by attaching a stiffener. Fig. 24 shows an FE model of the
front panel, which is modeled by using MSC.PATRAN and imported into Structural Dynamics

Toolbox. Four-node quadrilateral steel plate elements with thickness of 3mm are used for the FE
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Fig. 23. Improvement of the first natural frequency of the stiffened plate (Case 3).
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Fig. 24. FE model of front panel of air conditioner outdoor unit.

Mode 7 at 14.97 Hz

Fig. 25. First flexible mode shape of the front panel.
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Fig. 26. Feasible region on the z ¼ 0 plane where a stiffener is placed.
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Fig. 27. Variation of stiffener layout during the optimization process of the front panel.
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model. The total number of dofs is 8520. First flexible mode (14.9687Hz) is a torsional mode, as
shown in Fig. 25. Assume that the stiffener is constrained to be placed within the specified feasible
region in the front panel, as shown in Fig. 26. The feasible region is defined by a 2D planar convex
polygon with four vertexes:

VO ¼
VOx

VOy

� 

¼

0:270 0:550 0:550 0:270


0:319 
0:319 0:280 0:280

� 

ðunit: mÞ (9)

The steel stiffener has cross-sectional dimensions of width 5mm and height 10mm. Note that
initial individuals are also positioned in infeasible region.
The obtained optimal stiffener layout is shown in Fig. 27, marked number 5:When the stiffener

is placed vertically along the left boundary line of the feasible region, the first flexible natural
frequency can be increased to 15.6088Hz, as shown in Fig. 28.
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Fig. 28. Improvement of the first flexible natural frequency of the stiffened front panel.
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7. Conclusions

In this paper, stiffener layout optimization to raise the first natural frequency of a base structure
was performed, where the length as well as the position of the stiffener was chosen as a design
variable. Evolution strategies was taken as an optimization tool. In addition, EVOSLINOC was
utilized to handle both feasible and infeasible individuals. In EVOSLINOC, geometry algorithms
were adopted to define both convex and concave feasible regions and to measure a degree of
geometry constraint violation. From numerical examples, the proposed geometry constraint
handling technique was verified and proved that the technique can easily be applied to structures
in not only convex but also concave shapes, even with a protrusion or interior holes. Note that the
proposed technique using geometry algorithms is not limited to stiffener layout optimization
problems. The technique can also be applied to other research areas that are related to sound and
vibration and need numerical optimization techniques for better designs such as absorptive
material arrangement optimization, position optimization of supports, dampers and mounts, etc.,
where geometry constraints are inevitably involved.
Acknowledgements

This work was supported by a National Research Laboratory program (NRL:M1-0001-00-
0139) financed by KISTEP (Korea Institute of Science and Technology Evaluation and Planning).
References

[1] P. Avitabile, Twenty years of structural dynamics modification—a review, in: Proceedings of the 20th International

Modal Analysis Conference, Los Angeles, CA, USA, 2002, pp. 356–372.

[2] Y.H. Park, Y.S. Park, Structure optimization to enhance its natural frequencies based on measured frequency

response functions, Journal of Sound and Vibration 229 (5) (2000) 1235–1255.



ARTICLE IN PRESS

J.-H. Lee et al. / Journal of Sound and Vibration 285 (2005) 101–120120
[3] Z.S. Liu, J.S. Hansen, D.C.D. Oguamanam, Eigenvalue sensitivity of stiffened plates with respect to the location of

stiffeners, Structural and Multidisciplinary Optimization 16 (1998) 155–161.

[4] M.A. Tournour, N. Atalla, Optimization design for stiffeners using component mode synthesis, in: Proceedings of

Noise-Con 98, Ypsilanti, MI, USA, 1998, pp. 331–334.

[5] J.L. Marcelin, Genetic optimization of stiffened plates without the FE mesh support, International Journal for

Numerical Methods in Engineering 54 (2002) 685–694.

[6] J. Fatemi, P. Trompette, Optimal design of stiffened plate structures, in: Proceedings of the 43rd AIAA/ASME/

ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, CO, USA, 2002, AIAA

Paper 2002-1672.

[7] E.I. Jung, Y.S. Park, SDM based on substructures having non-matching nodes, in: Proceedings of International

Conference on Structural Dynamics Modeling: Test, Analysis, Correlation and Validation, Funchal, Madeira,

Portugal, 2002, pp. 655–662.

[8] E.I. Jung, Y.S. Park, Structure optimization using coupling position of substructure based on measured frequency

response functions, in: Proceedings of the 32nd International Congress and Exposition on Noise Control Engineering

(Inter-Noise 2003), Seogwipo, Jeju, Korea, 2003, pp. 3576–3583.

[9] J.H. Lee, Y.S. Park, SDM, utilizing evolution strategies: application to substructures having non-matching nodes,

in: Proceedings of the 21st International Modal Analysis Conference, Kissimmee, FL, USA, 2003, Paper No. 114.

[10] J. O’Rourke, Computational Geometry in C, 2nd ed., Cambridge University Press, Cambridge, 1998.

[11] http://www.geometryalgorithms.com.

[12] M. Papadrakakis, N. Lagaros, G. Thierauf, J. Cai, Advanced solution methods in structural optimization based on

evolution strategies, Engineering Computations 15 (1) (1998) 12–34.

[13] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed., Springer, Berlin, 1999.

[14] K. Ohkura, Y. Matsumura, K. Ueda, Robust evolution strategies, Applied Intelligence 15 (2001) 153–169.

[15] T.T. Binh, U. Korn, Scalar optimization with linear and nonlinear constraints using evolution strategies, Lecture

Notes in Computer Science, vol. 1226, Springer, Berlin, 1997, pp. 381–392.

[16] C.A.C. Coello, Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a

survey of the state of the art, Computer Methods in Applied Mechanics and Engineering 191 (2002) 1245–1287.

[17] K.C. Park, C.A. Fellipa, G. Rebel, A simple algorithm for localized construction of non-matching structural

interfaces, International Journal for Numerical Methods in Engineering 53 (9) (2002) 2117–2142.

[18] E. Balmès, Structural Dynamics Toolbox Version 5.1 (for use with MATLAB), http://www.sdtools.com, October

2003.

http://www.geometryalgorithms.com
http://www.sdtools.com

	A geometry constraint handling technique for stiffener layout optimization problem
	Introduction
	Stiffener layout optimization
	Target problem definition
	Necessity of geometry algorithms in stiffener layout optimization

	Description of a feasible region and feasibility check by geometry algorithms
	Inclusion of a point in a polygon
	Inclusion of a line segment in a polygon
	Inclusion of a polygon in a polygon (supplementary)

	EVOSLINOC
	Linking geometry algorithms to EVOSLINOC
	Numerical examples
	L-shaped plate
	Case 1
	Case 2
	Case 3

	Front panel of outdoor unit of air conditioner

	Conclusions
	Acknowledgements
	References


